Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 259(5): 93, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509429

RESUMO

MAIN CONCLUSION: dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.


Assuntos
Giberelinas , Oryza , Oryza/metabolismo , Alelos , Melhoramento Vegetal , Citocininas/metabolismo , Grão Comestível/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo
2.
Plant J ; 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29876974

RESUMO

D1-cytoplasmic male sterility (CMS) rice is a sporophytic cytoplasmic male-sterile rice developed from Dongxiang wild rice that exhibits a no-pollen-grain phenotype. A mitochondrial chimeric gene (orf182) was detected by mitochondrial genome sequencing and a comparative analysis. Orf182 is composed of three recombinant fragments, the largest of which is homologous to Sorghum bicolor mitochondrial sequences. In addition, orf182 was found only in wild rice species collected from China. Northern blot analysis showed that orf182 transcripts were affected by Rf genes in the isocytoplasmic restorer line DR7. Western blot analysis showed that the ORF182 product was localized in the mitochondria of the CMS line. An expression cassette containing orf182 fused to a mitochondrial transit peptide induced the maintainer line of male sterility, which lacked pollen grains in the anthers. Furthermore, the in vivo expression of orf182 also inhibited the growth of Escherichia coli, with lower respiration rate, excess accumulation of reactive oxygen species and decreased ATP levels. We conclude that the mitochondrial chimeric gene orf182 possesses a unique structure and origin differing from other identified mitochondrial CMS genes, and this gene is connected to non-pollen type of sporophytic male sterility in D1-CMS rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...